You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

245 lines
7.8 KiB

2 months ago
using System;
using System.Diagnostics;
using Org.BouncyCastle.Math.Raw;
using Org.BouncyCastle.Utilities;
using Org.BouncyCastle.Utilities.Encoders;
namespace Org.BouncyCastle.Math.EC.Custom.Sec
{
internal class SecP224K1FieldElement
: AbstractFpFieldElement
{
public static readonly BigInteger Q = new BigInteger(1,
Hex.DecodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFE56D"));
// Calculated as BigInteger.Two.ModPow(Q.ShiftRight(2), Q)
private static readonly uint[] PRECOMP_POW2 = new uint[]{ 0x33bfd202, 0xdcfad133, 0x2287624a, 0xc3811ba8,
0xa85558fc, 0x1eaef5d7, 0x8edf154c };
protected internal readonly uint[] x;
public SecP224K1FieldElement(BigInteger x)
{
if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
throw new ArgumentException("value invalid for SecP224K1FieldElement", "x");
this.x = SecP224K1Field.FromBigInteger(x);
}
public SecP224K1FieldElement()
{
this.x = Nat224.Create();
}
protected internal SecP224K1FieldElement(uint[] x)
{
this.x = x;
}
public override bool IsZero
{
get { return Nat224.IsZero(x); }
}
public override bool IsOne
{
get { return Nat224.IsOne(x); }
}
public override bool TestBitZero()
{
return Nat224.GetBit(x, 0) == 1;
}
public override BigInteger ToBigInteger()
{
return Nat224.ToBigInteger(x);
}
public override string FieldName
{
get { return "SecP224K1Field"; }
}
public override int FieldSize
{
get { return Q.BitLength; }
}
public override ECFieldElement Add(ECFieldElement b)
{
uint[] z = Nat224.Create();
SecP224K1Field.Add(x, ((SecP224K1FieldElement)b).x, z);
return new SecP224K1FieldElement(z);
}
public override ECFieldElement AddOne()
{
uint[] z = Nat224.Create();
SecP224K1Field.AddOne(x, z);
return new SecP224K1FieldElement(z);
}
public override ECFieldElement Subtract(ECFieldElement b)
{
uint[] z = Nat224.Create();
SecP224K1Field.Subtract(x, ((SecP224K1FieldElement)b).x, z);
return new SecP224K1FieldElement(z);
}
public override ECFieldElement Multiply(ECFieldElement b)
{
uint[] z = Nat224.Create();
SecP224K1Field.Multiply(x, ((SecP224K1FieldElement)b).x, z);
return new SecP224K1FieldElement(z);
}
public override ECFieldElement Divide(ECFieldElement b)
{
//return Multiply(b.Invert());
uint[] z = Nat224.Create();
SecP224K1Field.Inv(((SecP224K1FieldElement)b).x, z);
SecP224K1Field.Multiply(z, x, z);
return new SecP224K1FieldElement(z);
}
public override ECFieldElement Negate()
{
uint[] z = Nat224.Create();
SecP224K1Field.Negate(x, z);
return new SecP224K1FieldElement(z);
}
public override ECFieldElement Square()
{
uint[] z = Nat224.Create();
SecP224K1Field.Square(x, z);
return new SecP224K1FieldElement(z);
}
public override ECFieldElement Invert()
{
//return new SecP224K1FieldElement(ToBigInteger().ModInverse(Q));
uint[] z = Nat224.Create();
SecP224K1Field.Inv(x, z);
return new SecP224K1FieldElement(z);
}
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public override ECFieldElement Sqrt()
{
/*
* Q == 8m + 5, so we use Pocklington's method for this case.
*
* First, raise this element to the exponent 2^221 - 2^29 - 2^9 - 2^8 - 2^6 - 2^4 - 2^1 (i.e. m + 1)
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 191 1s } { 1 0s } { 19 1s } { 2 0s } { 1 1s } { 1 0s } { 1 1s } { 1 0s } { 3 1s } { 1 0s }
*
* Therefore we need an addition chain containing 1, 3, 19, 191 (the lengths of the repunits)
* We use: [1], 2, [3], 4, 8, 11, [19], 23, 42, 84, 107, [191]
*/
uint[] x1 = this.x;
if (Nat224.IsZero(x1) || Nat224.IsOne(x1))
return this;
uint[] x2 = Nat224.Create();
SecP224K1Field.Square(x1, x2);
SecP224K1Field.Multiply(x2, x1, x2);
uint[] x3 = x2;
SecP224K1Field.Square(x2, x3);
SecP224K1Field.Multiply(x3, x1, x3);
uint[] x4 = Nat224.Create();
SecP224K1Field.Square(x3, x4);
SecP224K1Field.Multiply(x4, x1, x4);
uint[] x8 = Nat224.Create();
SecP224K1Field.SquareN(x4, 4, x8);
SecP224K1Field.Multiply(x8, x4, x8);
uint[] x11 = Nat224.Create();
SecP224K1Field.SquareN(x8, 3, x11);
SecP224K1Field.Multiply(x11, x3, x11);
uint[] x19 = x11;
SecP224K1Field.SquareN(x11, 8, x19);
SecP224K1Field.Multiply(x19, x8, x19);
uint[] x23 = x8;
SecP224K1Field.SquareN(x19, 4, x23);
SecP224K1Field.Multiply(x23, x4, x23);
uint[] x42 = x4;
SecP224K1Field.SquareN(x23, 19, x42);
SecP224K1Field.Multiply(x42, x19, x42);
uint[] x84 = Nat224.Create();
SecP224K1Field.SquareN(x42, 42, x84);
SecP224K1Field.Multiply(x84, x42, x84);
uint[] x107 = x42;
SecP224K1Field.SquareN(x84, 23, x107);
SecP224K1Field.Multiply(x107, x23, x107);
uint[] x191 = x23;
SecP224K1Field.SquareN(x107, 84, x191);
SecP224K1Field.Multiply(x191, x84, x191);
uint[] t1 = x191;
SecP224K1Field.SquareN(t1, 20, t1);
SecP224K1Field.Multiply(t1, x19, t1);
SecP224K1Field.SquareN(t1, 3, t1);
SecP224K1Field.Multiply(t1, x1, t1);
SecP224K1Field.SquareN(t1, 2, t1);
SecP224K1Field.Multiply(t1, x1, t1);
SecP224K1Field.SquareN(t1, 4, t1);
SecP224K1Field.Multiply(t1, x3, t1);
SecP224K1Field.Square(t1, t1);
uint[] t2 = x84;
SecP224K1Field.Square(t1, t2);
if (Nat224.Eq(x1, t2))
{
return new SecP224K1FieldElement(t1);
}
/*
* If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess,
* which is ((4x)^(m + 1))/2 mod Q
*/
SecP224K1Field.Multiply(t1, PRECOMP_POW2, t1);
SecP224K1Field.Square(t1, t2);
if (Nat224.Eq(x1, t2))
{
return new SecP224K1FieldElement(t1);
}
return null;
}
public override bool Equals(object obj)
{
return Equals(obj as SecP224K1FieldElement);
}
public override bool Equals(ECFieldElement other)
{
return Equals(other as SecP224K1FieldElement);
}
public virtual bool Equals(SecP224K1FieldElement other)
{
if (this == other)
return true;
if (null == other)
return false;
return Nat224.Eq(x, other.x);
}
public override int GetHashCode()
{
return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 7);
}
}
}