You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

449 lines
14 KiB

using System;
using System.Diagnostics;
using Org.BouncyCastle.Math.Raw;
namespace Org.BouncyCastle.Math.EC.Custom.Sec
{
internal class SecT571Field
{
private const ulong M59 = ulong.MaxValue >> 5;
private static readonly ulong[] ROOT_Z = new ulong[]{ 0x2BE1195F08CAFB99UL, 0x95F08CAF84657C23UL,
0xCAF84657C232BE11UL, 0x657C232BE1195F08UL, 0xF84657C2308CAF84UL, 0x7C232BE1195F08CAUL,
0xBE1195F08CAF8465UL, 0x5F08CAF84657C232UL, 0x784657C232BE119UL };
public static void Add(ulong[] x, ulong[] y, ulong[] z)
{
for (int i = 0; i < 9; ++i)
{
z[i] = x[i] ^ y[i];
}
}
private static void Add(ulong[] x, int xOff, ulong[] y, int yOff, ulong[] z, int zOff)
{
for (int i = 0; i < 9; ++i)
{
z[zOff + i] = x[xOff + i] ^ y[yOff + i];
}
}
public static void AddBothTo(ulong[] x, ulong[] y, ulong[] z)
{
for (int i = 0; i < 9; ++i)
{
z[i] ^= x[i] ^ y[i];
}
}
private static void AddBothTo(ulong[] x, int xOff, ulong[] y, int yOff, ulong[] z, int zOff)
{
for (int i = 0; i < 9; ++i)
{
z[zOff + i] ^= x[xOff + i] ^ y[yOff + i];
}
}
public static void AddExt(ulong[] xx, ulong[] yy, ulong[] zz)
{
for (int i = 0; i < 18; ++i)
{
zz[i] = xx[i] ^ yy[i];
}
}
public static void AddOne(ulong[] x, ulong[] z)
{
z[0] = x[0] ^ 1UL;
for (int i = 1; i < 9; ++i)
{
z[i] = x[i];
}
}
private static void AddTo(ulong[] x, ulong[] z)
{
for (int i = 0; i < 9; ++i)
{
z[i] ^= x[i];
}
}
public static ulong[] FromBigInteger(BigInteger x)
{
return Nat.FromBigInteger64(571, x);
}
public static void HalfTrace(ulong[] x, ulong[] z)
{
ulong[] tt = Nat576.CreateExt64();
Nat576.Copy64(x, z);
for (int i = 1; i < 571; i += 2)
{
ImplSquare(z, tt);
Reduce(tt, z);
ImplSquare(z, tt);
Reduce(tt, z);
AddTo(x, z);
}
}
public static void Invert(ulong[] x, ulong[] z)
{
if (Nat576.IsZero64(x))
throw new InvalidOperationException();
// Itoh-Tsujii inversion with bases { 2, 3, 5 }
ulong[] t0 = Nat576.Create64();
ulong[] t1 = Nat576.Create64();
ulong[] t2 = Nat576.Create64();
Square(x, t2);
// 5 | 570
Square(t2, t0);
Square(t0, t1);
Multiply(t0, t1, t0);
SquareN(t0, 2, t1);
Multiply(t0, t1, t0);
Multiply(t0, t2, t0);
// 3 | 114
SquareN(t0, 5, t1);
Multiply(t0, t1, t0);
SquareN(t1, 5, t1);
Multiply(t0, t1, t0);
// 2 | 38
SquareN(t0, 15, t1);
Multiply(t0, t1, t2);
// ! {2,3,5} | 19
SquareN(t2, 30, t0);
SquareN(t0, 30, t1);
Multiply(t0, t1, t0);
// 3 | 9
SquareN(t0, 60, t1);
Multiply(t0, t1, t0);
SquareN(t1, 60, t1);
Multiply(t0, t1, t0);
// 3 | 3
SquareN(t0, 180, t1);
Multiply(t0, t1, t0);
SquareN(t1, 180, t1);
Multiply(t0, t1, t0);
Multiply(t0, t2, z);
}
public static void Multiply(ulong[] x, ulong[] y, ulong[] z)
{
ulong[] tt = Nat576.CreateExt64();
ImplMultiply(x, y, tt);
Reduce(tt, z);
}
public static void MultiplyAddToExt(ulong[] x, ulong[] y, ulong[] zz)
{
ulong[] tt = Nat576.CreateExt64();
ImplMultiply(x, y, tt);
AddExt(zz, tt, zz);
}
public static void MultiplyPrecomp(ulong[] x, ulong[] precomp, ulong[] z)
{
ulong[] tt = Nat576.CreateExt64();
ImplMultiplyPrecomp(x, precomp, tt);
Reduce(tt, z);
}
public static void MultiplyPrecompAddToExt(ulong[] x, ulong[] precomp, ulong[] zz)
{
ulong[] tt = Nat576.CreateExt64();
ImplMultiplyPrecomp(x, precomp, tt);
AddExt(zz, tt, zz);
}
public static ulong[] PrecompMultiplicand(ulong[] x)
{
/*
* Precompute table of all 4-bit products of x (first section)
*/
int len = 9 << 4;
ulong[] t = new ulong[len << 1];
Array.Copy(x, 0, t, 9, 9);
//Reduce5(t, 9);
int tOff = 0;
for (int i = 7; i > 0; --i)
{
tOff += 18;
Nat.ShiftUpBit64(9, t, tOff >> 1, 0UL, t, tOff);
Reduce5(t, tOff);
Add(t, 9, t, tOff, t, tOff + 9);
}
/*
* Second section with all 4-bit products of x shifted 4 bits
*/
Nat.ShiftUpBits64(len, t, 0, 4, 0UL, t, len);
return t;
}
public static void Reduce(ulong[] xx, ulong[] z)
{
ulong xx09 = xx[9];
ulong u = xx[17], v = xx09;
xx09 = v ^ (u >> 59) ^ (u >> 57) ^ (u >> 54) ^ (u >> 49);
v = xx[8] ^ (u << 5) ^ (u << 7) ^ (u << 10) ^ (u << 15);
for (int i = 16; i >= 10; --i)
{
u = xx[i];
z[i - 8] = v ^ (u >> 59) ^ (u >> 57) ^ (u >> 54) ^ (u >> 49);
v = xx[i - 9] ^ (u << 5) ^ (u << 7) ^ (u << 10) ^ (u << 15);
}
u = xx09;
z[1] = v ^ (u >> 59) ^ (u >> 57) ^ (u >> 54) ^ (u >> 49);
v = xx[0] ^ (u << 5) ^ (u << 7) ^ (u << 10) ^ (u << 15);
ulong x08 = z[8];
ulong t = x08 >> 59;
z[0] = v ^ t ^ (t << 2) ^ (t << 5) ^ (t << 10);
z[8] = x08 & M59;
}
public static void Reduce5(ulong[] z, int zOff)
{
ulong z8 = z[zOff + 8], t = z8 >> 59;
z[zOff ] ^= t ^ (t << 2) ^ (t << 5) ^ (t << 10);
z[zOff + 8] = z8 & M59;
}
public static void Sqrt(ulong[] x, ulong[] z)
{
ulong[] evn = Nat576.Create64(), odd = Nat576.Create64();
int pos = 0;
for (int i = 0; i < 4; ++i)
{
ulong u0 = Interleave.Unshuffle(x[pos++]);
ulong u1 = Interleave.Unshuffle(x[pos++]);
evn[i] = (u0 & 0x00000000FFFFFFFFUL) | (u1 << 32);
odd[i] = (u0 >> 32) | (u1 & 0xFFFFFFFF00000000UL);
}
{
ulong u0 = Interleave.Unshuffle(x[pos]);
evn[4] = (u0 & 0x00000000FFFFFFFFUL);
odd[4] = (u0 >> 32);
}
Multiply(odd, ROOT_Z, z);
Add(z, evn, z);
}
public static void Square(ulong[] x, ulong[] z)
{
ulong[] tt = Nat576.CreateExt64();
ImplSquare(x, tt);
Reduce(tt, z);
}
public static void SquareAddToExt(ulong[] x, ulong[] zz)
{
ulong[] tt = Nat576.CreateExt64();
ImplSquare(x, tt);
AddExt(zz, tt, zz);
}
public static void SquareN(ulong[] x, int n, ulong[] z)
{
Debug.Assert(n > 0);
ulong[] tt = Nat576.CreateExt64();
ImplSquare(x, tt);
Reduce(tt, z);
while (--n > 0)
{
ImplSquare(z, tt);
Reduce(tt, z);
}
}
public static uint Trace(ulong[] x)
{
// Non-zero-trace bits: 0, 561, 569
return (uint)(x[0] ^ (x[8] >> 49) ^ (x[8] >> 57)) & 1U;
}
protected static void ImplMultiply(ulong[] x, ulong[] y, ulong[] zz)
{
//ulong[] precomp = PrecompMultiplicand(y);
//ImplMultiplyPrecomp(x, precomp, zz);
ulong[] u = new ulong[16];
for (int i = 0; i < 9; ++i)
{
ImplMulwAcc(u, x[i], y[i], zz, i << 1);
}
ulong v0 = zz[0], v1 = zz[1];
v0 ^= zz[ 2]; zz[1] = v0 ^ v1; v1 ^= zz[ 3];
v0 ^= zz[ 4]; zz[2] = v0 ^ v1; v1 ^= zz[ 5];
v0 ^= zz[ 6]; zz[3] = v0 ^ v1; v1 ^= zz[ 7];
v0 ^= zz[ 8]; zz[4] = v0 ^ v1; v1 ^= zz[ 9];
v0 ^= zz[10]; zz[5] = v0 ^ v1; v1 ^= zz[11];
v0 ^= zz[12]; zz[6] = v0 ^ v1; v1 ^= zz[13];
v0 ^= zz[14]; zz[7] = v0 ^ v1; v1 ^= zz[15];
v0 ^= zz[16]; zz[8] = v0 ^ v1; v1 ^= zz[17];
ulong w = v0 ^ v1;
zz[ 9] = zz[0] ^ w;
zz[10] = zz[1] ^ w;
zz[11] = zz[2] ^ w;
zz[12] = zz[3] ^ w;
zz[13] = zz[4] ^ w;
zz[14] = zz[5] ^ w;
zz[15] = zz[6] ^ w;
zz[16] = zz[7] ^ w;
zz[17] = zz[8] ^ w;
ImplMulwAcc(u, x[0] ^ x[1], y[0] ^ y[1], zz, 1);
ImplMulwAcc(u, x[0] ^ x[2], y[0] ^ y[2], zz, 2);
ImplMulwAcc(u, x[0] ^ x[3], y[0] ^ y[3], zz, 3);
ImplMulwAcc(u, x[1] ^ x[2], y[1] ^ y[2], zz, 3);
ImplMulwAcc(u, x[0] ^ x[4], y[0] ^ y[4], zz, 4);
ImplMulwAcc(u, x[1] ^ x[3], y[1] ^ y[3], zz, 4);
ImplMulwAcc(u, x[0] ^ x[5], y[0] ^ y[5], zz, 5);
ImplMulwAcc(u, x[1] ^ x[4], y[1] ^ y[4], zz, 5);
ImplMulwAcc(u, x[2] ^ x[3], y[2] ^ y[3], zz, 5);
ImplMulwAcc(u, x[0] ^ x[6], y[0] ^ y[6], zz, 6);
ImplMulwAcc(u, x[1] ^ x[5], y[1] ^ y[5], zz, 6);
ImplMulwAcc(u, x[2] ^ x[4], y[2] ^ y[4], zz, 6);
ImplMulwAcc(u, x[0] ^ x[7], y[0] ^ y[7], zz, 7);
ImplMulwAcc(u, x[1] ^ x[6], y[1] ^ y[6], zz, 7);
ImplMulwAcc(u, x[2] ^ x[5], y[2] ^ y[5], zz, 7);
ImplMulwAcc(u, x[3] ^ x[4], y[3] ^ y[4], zz, 7);
ImplMulwAcc(u, x[0] ^ x[8], y[0] ^ y[8], zz, 8);
ImplMulwAcc(u, x[1] ^ x[7], y[1] ^ y[7], zz, 8);
ImplMulwAcc(u, x[2] ^ x[6], y[2] ^ y[6], zz, 8);
ImplMulwAcc(u, x[3] ^ x[5], y[3] ^ y[5], zz, 8);
ImplMulwAcc(u, x[1] ^ x[8], y[1] ^ y[8], zz, 9);
ImplMulwAcc(u, x[2] ^ x[7], y[2] ^ y[7], zz, 9);
ImplMulwAcc(u, x[3] ^ x[6], y[3] ^ y[6], zz, 9);
ImplMulwAcc(u, x[4] ^ x[5], y[4] ^ y[5], zz, 9);
ImplMulwAcc(u, x[2] ^ x[8], y[2] ^ y[8], zz, 10);
ImplMulwAcc(u, x[3] ^ x[7], y[3] ^ y[7], zz, 10);
ImplMulwAcc(u, x[4] ^ x[6], y[4] ^ y[6], zz, 10);
ImplMulwAcc(u, x[3] ^ x[8], y[3] ^ y[8], zz, 11);
ImplMulwAcc(u, x[4] ^ x[7], y[4] ^ y[7], zz, 11);
ImplMulwAcc(u, x[5] ^ x[6], y[5] ^ y[6], zz, 11);
ImplMulwAcc(u, x[4] ^ x[8], y[4] ^ y[8], zz, 12);
ImplMulwAcc(u, x[5] ^ x[7], y[5] ^ y[7], zz, 12);
ImplMulwAcc(u, x[5] ^ x[8], y[5] ^ y[8], zz, 13);
ImplMulwAcc(u, x[6] ^ x[7], y[6] ^ y[7], zz, 13);
ImplMulwAcc(u, x[6] ^ x[8], y[6] ^ y[8], zz, 14);
ImplMulwAcc(u, x[7] ^ x[8], y[7] ^ y[8], zz, 15);
}
protected static void ImplMultiplyPrecomp(ulong[] x, ulong[] precomp, ulong[] zz)
{
uint MASK = 0xF;
/*
* Lopez-Dahab algorithm
*/
for (int k = 56; k >= 0; k -= 8)
{
for (int j = 1; j < 9; j += 2)
{
uint aVal = (uint)(x[j] >> k);
uint u = aVal & MASK;
uint v = (aVal >> 4) & MASK;
AddBothTo(precomp, (int)(9 * u), precomp, (int)(9 * (v + 16)), zz, j - 1);
}
Nat.ShiftUpBits64(16, zz, 0, 8, 0UL);
}
for (int k = 56; k >= 0; k -= 8)
{
for (int j = 0; j < 9; j += 2)
{
uint aVal = (uint)(x[j] >> k);
uint u = aVal & MASK;
uint v = (aVal >> 4) & MASK;
AddBothTo(precomp, (int)(9 * u), precomp, (int)(9 * (v + 16)), zz, j);
}
if (k > 0)
{
Nat.ShiftUpBits64(18, zz, 0, 8, 0UL);
}
}
}
protected static void ImplMulwAcc(ulong[] u, ulong x, ulong y, ulong[] z, int zOff)
{
//u[0] = 0;
u[1] = y;
for (int i = 2; i < 16; i += 2)
{
u[i ] = u[i >> 1] << 1;
u[i + 1] = u[i ] ^ y;
}
uint j = (uint)x;
ulong g, h = 0, l = u[j & 15]
^ u[(j >> 4) & 15] << 4;
int k = 56;
do
{
j = (uint)(x >> k);
g = u[j & 15]
^ u[(j >> 4) & 15] << 4;
l ^= (g << k);
h ^= (g >> -k);
}
while ((k -= 8) > 0);
for (int p = 0; p < 7; ++p)
{
x = (x & 0xFEFEFEFEFEFEFEFEUL) >> 1;
h ^= x & (ulong)((long)(y << p) >> 63);
}
Debug.Assert(h >> 63 == 0);
z[zOff ] ^= l;
z[zOff + 1] ^= h;
}
protected static void ImplSquare(ulong[] x, ulong[] zz)
{
Interleave.Expand64To128(x, 0, 9, zz, 0);
}
}
}