You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

233 lines
7.2 KiB

using System;
using Org.BouncyCastle.Math.Raw;
using Org.BouncyCastle.Utilities;
namespace Org.BouncyCastle.Math.EC.Custom.Djb
{
internal class Curve25519FieldElement
: AbstractFpFieldElement
{
public static readonly BigInteger Q = Nat256.ToBigInteger(Curve25519Field.P);
// Calculated as ECConstants.TWO.modPow(Q.shiftRight(2), Q)
private static readonly uint[] PRECOMP_POW2 = new uint[]{ 0x4a0ea0b0, 0xc4ee1b27, 0xad2fe478, 0x2f431806,
0x3dfbd7a7, 0x2b4d0099, 0x4fc1df0b, 0x2b832480 };
protected internal readonly uint[] x;
public Curve25519FieldElement(BigInteger x)
{
if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
throw new ArgumentException("value invalid for Curve25519FieldElement", "x");
this.x = Curve25519Field.FromBigInteger(x);
}
public Curve25519FieldElement()
{
this.x = Nat256.Create();
}
protected internal Curve25519FieldElement(uint[] x)
{
this.x = x;
}
public override bool IsZero
{
get { return Nat256.IsZero(x); }
}
public override bool IsOne
{
get { return Nat256.IsOne(x); }
}
public override bool TestBitZero()
{
return Nat256.GetBit(x, 0) == 1;
}
public override BigInteger ToBigInteger()
{
return Nat256.ToBigInteger(x);
}
public override string FieldName
{
get { return "Curve25519Field"; }
}
public override int FieldSize
{
get { return Q.BitLength; }
}
public override ECFieldElement Add(ECFieldElement b)
{
uint[] z = Nat256.Create();
Curve25519Field.Add(x, ((Curve25519FieldElement)b).x, z);
return new Curve25519FieldElement(z);
}
public override ECFieldElement AddOne()
{
uint[] z = Nat256.Create();
Curve25519Field.AddOne(x, z);
return new Curve25519FieldElement(z);
}
public override ECFieldElement Subtract(ECFieldElement b)
{
uint[] z = Nat256.Create();
Curve25519Field.Subtract(x, ((Curve25519FieldElement)b).x, z);
return new Curve25519FieldElement(z);
}
public override ECFieldElement Multiply(ECFieldElement b)
{
uint[] z = Nat256.Create();
Curve25519Field.Multiply(x, ((Curve25519FieldElement)b).x, z);
return new Curve25519FieldElement(z);
}
public override ECFieldElement Divide(ECFieldElement b)
{
//return Multiply(b.Invert());
uint[] z = Nat256.Create();
Curve25519Field.Inv(((Curve25519FieldElement)b).x, z);
Curve25519Field.Multiply(z, x, z);
return new Curve25519FieldElement(z);
}
public override ECFieldElement Negate()
{
uint[] z = Nat256.Create();
Curve25519Field.Negate(x, z);
return new Curve25519FieldElement(z);
}
public override ECFieldElement Square()
{
uint[] z = Nat256.Create();
Curve25519Field.Square(x, z);
return new Curve25519FieldElement(z);
}
public override ECFieldElement Invert()
{
//return new Curve25519FieldElement(ToBigInteger().ModInverse(Q));
uint[] z = Nat256.Create();
Curve25519Field.Inv(x, z);
return new Curve25519FieldElement(z);
}
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public override ECFieldElement Sqrt()
{
/*
* Q == 8m + 5, so we use Pocklington's method for this case.
*
* First, raise this element to the exponent 2^252 - 2^1 (i.e. m + 1)
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 251 1s } { 1 0s }
*
* Therefore we need an addition chain containing 251 (the lengths of the repunits)
* We use: 1, 2, 3, 4, 7, 11, 15, 30, 60, 120, 131, [251]
*/
uint[] x1 = this.x;
if (Nat256.IsZero(x1) || Nat256.IsOne(x1))
return this;
uint[] x2 = Nat256.Create();
Curve25519Field.Square(x1, x2);
Curve25519Field.Multiply(x2, x1, x2);
uint[] x3 = x2;
Curve25519Field.Square(x2, x3);
Curve25519Field.Multiply(x3, x1, x3);
uint[] x4 = Nat256.Create();
Curve25519Field.Square(x3, x4);
Curve25519Field.Multiply(x4, x1, x4);
uint[] x7 = Nat256.Create();
Curve25519Field.SquareN(x4, 3, x7);
Curve25519Field.Multiply(x7, x3, x7);
uint[] x11 = x3;
Curve25519Field.SquareN(x7, 4, x11);
Curve25519Field.Multiply(x11, x4, x11);
uint[] x15 = x7;
Curve25519Field.SquareN(x11, 4, x15);
Curve25519Field.Multiply(x15, x4, x15);
uint[] x30 = x4;
Curve25519Field.SquareN(x15, 15, x30);
Curve25519Field.Multiply(x30, x15, x30);
uint[] x60 = x15;
Curve25519Field.SquareN(x30, 30, x60);
Curve25519Field.Multiply(x60, x30, x60);
uint[] x120 = x30;
Curve25519Field.SquareN(x60, 60, x120);
Curve25519Field.Multiply(x120, x60, x120);
uint[] x131 = x60;
Curve25519Field.SquareN(x120, 11, x131);
Curve25519Field.Multiply(x131, x11, x131);
uint[] x251 = x11;
Curve25519Field.SquareN(x131, 120, x251);
Curve25519Field.Multiply(x251, x120, x251);
uint[] t1 = x251;
Curve25519Field.Square(t1, t1);
uint[] t2 = x120;
Curve25519Field.Square(t1, t2);
if (Nat256.Eq(x1, t2))
{
return new Curve25519FieldElement(t1);
}
/*
* If the first guess is incorrect, we multiply by a precomputed power of 2 to get the second guess,
* which is ((4x)^(m + 1))/2 mod Q
*/
Curve25519Field.Multiply(t1, PRECOMP_POW2, t1);
Curve25519Field.Square(t1, t2);
if (Nat256.Eq(x1, t2))
{
return new Curve25519FieldElement(t1);
}
return null;
}
public override bool Equals(object obj)
{
return Equals(obj as Curve25519FieldElement);
}
public override bool Equals(ECFieldElement other)
{
return Equals(other as Curve25519FieldElement);
}
public virtual bool Equals(Curve25519FieldElement other)
{
if (this == other)
return true;
if (null == other)
return false;
return Nat256.Eq(x, other.x);
}
public override int GetHashCode()
{
return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 8);
}
}
}