You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

213 lines
6.5 KiB

using System;
using Org.BouncyCastle.Math.Raw;
using Org.BouncyCastle.Utilities;
using Org.BouncyCastle.Utilities.Encoders;
namespace Org.BouncyCastle.Math.EC.Custom.GM
{
internal class SM2P256V1FieldElement
: AbstractFpFieldElement
{
public static readonly BigInteger Q = new BigInteger(1,
Hex.DecodeStrict("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF"));
protected internal readonly uint[] x;
public SM2P256V1FieldElement(BigInteger x)
{
if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
throw new ArgumentException("value invalid for SM2P256V1FieldElement", "x");
this.x = SM2P256V1Field.FromBigInteger(x);
}
public SM2P256V1FieldElement()
{
this.x = Nat256.Create();
}
protected internal SM2P256V1FieldElement(uint[] x)
{
this.x = x;
}
public override bool IsZero
{
get { return Nat256.IsZero(x); }
}
public override bool IsOne
{
get { return Nat256.IsOne(x); }
}
public override bool TestBitZero()
{
return Nat256.GetBit(x, 0) == 1;
}
public override BigInteger ToBigInteger()
{
return Nat256.ToBigInteger(x);
}
public override string FieldName
{
get { return "SM2P256V1Field"; }
}
public override int FieldSize
{
get { return Q.BitLength; }
}
public override ECFieldElement Add(ECFieldElement b)
{
uint[] z = Nat256.Create();
SM2P256V1Field.Add(x, ((SM2P256V1FieldElement)b).x, z);
return new SM2P256V1FieldElement(z);
}
public override ECFieldElement AddOne()
{
uint[] z = Nat256.Create();
SM2P256V1Field.AddOne(x, z);
return new SM2P256V1FieldElement(z);
}
public override ECFieldElement Subtract(ECFieldElement b)
{
uint[] z = Nat256.Create();
SM2P256V1Field.Subtract(x, ((SM2P256V1FieldElement)b).x, z);
return new SM2P256V1FieldElement(z);
}
public override ECFieldElement Multiply(ECFieldElement b)
{
uint[] z = Nat256.Create();
SM2P256V1Field.Multiply(x, ((SM2P256V1FieldElement)b).x, z);
return new SM2P256V1FieldElement(z);
}
public override ECFieldElement Divide(ECFieldElement b)
{
//return Multiply(b.Invert());
uint[] z = Nat256.Create();
SM2P256V1Field.Inv(((SM2P256V1FieldElement)b).x, z);
SM2P256V1Field.Multiply(z, x, z);
return new SM2P256V1FieldElement(z);
}
public override ECFieldElement Negate()
{
uint[] z = Nat256.Create();
SM2P256V1Field.Negate(x, z);
return new SM2P256V1FieldElement(z);
}
public override ECFieldElement Square()
{
uint[] z = Nat256.Create();
SM2P256V1Field.Square(x, z);
return new SM2P256V1FieldElement(z);
}
public override ECFieldElement Invert()
{
//return new SM2P256V1FieldElement(ToBigInteger().ModInverse(Q));
uint[] z = Nat256.Create();
SM2P256V1Field.Inv(x, z);
return new SM2P256V1FieldElement(z);
}
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public override ECFieldElement Sqrt()
{
/*
* Raise this element to the exponent 2^254 - 2^222 - 2^94 + 2^62
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 31 1s } { 1 0s } { 128 1s } { 31 0s } { 1 1s } { 62 0s }
*
* We use an addition chain for the beginning: [1], 2, 3, 6, 12, [24], 30, [31]
*/
uint[] x1 = this.x;
if (Nat256.IsZero(x1) || Nat256.IsOne(x1))
{
return this;
}
uint[] x2 = Nat256.Create();
SM2P256V1Field.Square(x1, x2);
SM2P256V1Field.Multiply(x2, x1, x2);
uint[] x4 = Nat256.Create();
SM2P256V1Field.SquareN(x2, 2, x4);
SM2P256V1Field.Multiply(x4, x2, x4);
uint[] x6 = Nat256.Create();
SM2P256V1Field.SquareN(x4, 2, x6);
SM2P256V1Field.Multiply(x6, x2, x6);
uint[] x12 = x2;
SM2P256V1Field.SquareN(x6, 6, x12);
SM2P256V1Field.Multiply(x12, x6, x12);
uint[] x24 = Nat256.Create();
SM2P256V1Field.SquareN(x12, 12, x24);
SM2P256V1Field.Multiply(x24, x12, x24);
uint[] x30 = x12;
SM2P256V1Field.SquareN(x24, 6, x30);
SM2P256V1Field.Multiply(x30, x6, x30);
uint[] x31 = x6;
SM2P256V1Field.Square(x30, x31);
SM2P256V1Field.Multiply(x31, x1, x31);
uint[] t1 = x24;
SM2P256V1Field.SquareN(x31, 31, t1);
uint[] x62 = x30;
SM2P256V1Field.Multiply(t1, x31, x62);
SM2P256V1Field.SquareN(t1, 32, t1);
SM2P256V1Field.Multiply(t1, x62, t1);
SM2P256V1Field.SquareN(t1, 62, t1);
SM2P256V1Field.Multiply(t1, x62, t1);
SM2P256V1Field.SquareN(t1, 4, t1);
SM2P256V1Field.Multiply(t1, x4, t1);
SM2P256V1Field.SquareN(t1, 32, t1);
SM2P256V1Field.Multiply(t1, x1, t1);
SM2P256V1Field.SquareN(t1, 62, t1);
uint[] t2 = x4;
SM2P256V1Field.Square(t1, t2);
return Nat256.Eq(x1, t2) ? new SM2P256V1FieldElement(t1) : null;
}
public override bool Equals(object obj)
{
return Equals(obj as SM2P256V1FieldElement);
}
public override bool Equals(ECFieldElement other)
{
return Equals(other as SM2P256V1FieldElement);
}
public virtual bool Equals(SM2P256V1FieldElement other)
{
if (this == other)
return true;
if (null == other)
return false;
return Nat256.Eq(x, other.x);
}
public override int GetHashCode()
{
return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 8);
}
}
}