You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
213 lines
6.5 KiB
213 lines
6.5 KiB
using System;
|
|
|
|
using Org.BouncyCastle.Math.Raw;
|
|
using Org.BouncyCastle.Utilities;
|
|
using Org.BouncyCastle.Utilities.Encoders;
|
|
|
|
namespace Org.BouncyCastle.Math.EC.Custom.GM
|
|
{
|
|
internal class SM2P256V1FieldElement
|
|
: AbstractFpFieldElement
|
|
{
|
|
public static readonly BigInteger Q = new BigInteger(1,
|
|
Hex.DecodeStrict("FFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF"));
|
|
|
|
protected internal readonly uint[] x;
|
|
|
|
public SM2P256V1FieldElement(BigInteger x)
|
|
{
|
|
if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
|
|
throw new ArgumentException("value invalid for SM2P256V1FieldElement", "x");
|
|
|
|
this.x = SM2P256V1Field.FromBigInteger(x);
|
|
}
|
|
|
|
public SM2P256V1FieldElement()
|
|
{
|
|
this.x = Nat256.Create();
|
|
}
|
|
|
|
protected internal SM2P256V1FieldElement(uint[] x)
|
|
{
|
|
this.x = x;
|
|
}
|
|
|
|
public override bool IsZero
|
|
{
|
|
get { return Nat256.IsZero(x); }
|
|
}
|
|
|
|
public override bool IsOne
|
|
{
|
|
get { return Nat256.IsOne(x); }
|
|
}
|
|
|
|
public override bool TestBitZero()
|
|
{
|
|
return Nat256.GetBit(x, 0) == 1;
|
|
}
|
|
|
|
public override BigInteger ToBigInteger()
|
|
{
|
|
return Nat256.ToBigInteger(x);
|
|
}
|
|
|
|
public override string FieldName
|
|
{
|
|
get { return "SM2P256V1Field"; }
|
|
}
|
|
|
|
public override int FieldSize
|
|
{
|
|
get { return Q.BitLength; }
|
|
}
|
|
|
|
public override ECFieldElement Add(ECFieldElement b)
|
|
{
|
|
uint[] z = Nat256.Create();
|
|
SM2P256V1Field.Add(x, ((SM2P256V1FieldElement)b).x, z);
|
|
return new SM2P256V1FieldElement(z);
|
|
}
|
|
|
|
public override ECFieldElement AddOne()
|
|
{
|
|
uint[] z = Nat256.Create();
|
|
SM2P256V1Field.AddOne(x, z);
|
|
return new SM2P256V1FieldElement(z);
|
|
}
|
|
|
|
public override ECFieldElement Subtract(ECFieldElement b)
|
|
{
|
|
uint[] z = Nat256.Create();
|
|
SM2P256V1Field.Subtract(x, ((SM2P256V1FieldElement)b).x, z);
|
|
return new SM2P256V1FieldElement(z);
|
|
}
|
|
|
|
public override ECFieldElement Multiply(ECFieldElement b)
|
|
{
|
|
uint[] z = Nat256.Create();
|
|
SM2P256V1Field.Multiply(x, ((SM2P256V1FieldElement)b).x, z);
|
|
return new SM2P256V1FieldElement(z);
|
|
}
|
|
|
|
public override ECFieldElement Divide(ECFieldElement b)
|
|
{
|
|
//return Multiply(b.Invert());
|
|
uint[] z = Nat256.Create();
|
|
SM2P256V1Field.Inv(((SM2P256V1FieldElement)b).x, z);
|
|
SM2P256V1Field.Multiply(z, x, z);
|
|
return new SM2P256V1FieldElement(z);
|
|
}
|
|
|
|
public override ECFieldElement Negate()
|
|
{
|
|
uint[] z = Nat256.Create();
|
|
SM2P256V1Field.Negate(x, z);
|
|
return new SM2P256V1FieldElement(z);
|
|
}
|
|
|
|
public override ECFieldElement Square()
|
|
{
|
|
uint[] z = Nat256.Create();
|
|
SM2P256V1Field.Square(x, z);
|
|
return new SM2P256V1FieldElement(z);
|
|
}
|
|
|
|
public override ECFieldElement Invert()
|
|
{
|
|
//return new SM2P256V1FieldElement(ToBigInteger().ModInverse(Q));
|
|
uint[] z = Nat256.Create();
|
|
SM2P256V1Field.Inv(x, z);
|
|
return new SM2P256V1FieldElement(z);
|
|
}
|
|
|
|
/**
|
|
* return a sqrt root - the routine verifies that the calculation returns the right value - if
|
|
* none exists it returns null.
|
|
*/
|
|
public override ECFieldElement Sqrt()
|
|
{
|
|
/*
|
|
* Raise this element to the exponent 2^254 - 2^222 - 2^94 + 2^62
|
|
*
|
|
* Breaking up the exponent's binary representation into "repunits", we get:
|
|
* { 31 1s } { 1 0s } { 128 1s } { 31 0s } { 1 1s } { 62 0s }
|
|
*
|
|
* We use an addition chain for the beginning: [1], 2, 3, 6, 12, [24], 30, [31]
|
|
*/
|
|
|
|
uint[] x1 = this.x;
|
|
if (Nat256.IsZero(x1) || Nat256.IsOne(x1))
|
|
{
|
|
return this;
|
|
}
|
|
|
|
uint[] x2 = Nat256.Create();
|
|
SM2P256V1Field.Square(x1, x2);
|
|
SM2P256V1Field.Multiply(x2, x1, x2);
|
|
uint[] x4 = Nat256.Create();
|
|
SM2P256V1Field.SquareN(x2, 2, x4);
|
|
SM2P256V1Field.Multiply(x4, x2, x4);
|
|
uint[] x6 = Nat256.Create();
|
|
SM2P256V1Field.SquareN(x4, 2, x6);
|
|
SM2P256V1Field.Multiply(x6, x2, x6);
|
|
uint[] x12 = x2;
|
|
SM2P256V1Field.SquareN(x6, 6, x12);
|
|
SM2P256V1Field.Multiply(x12, x6, x12);
|
|
uint[] x24 = Nat256.Create();
|
|
SM2P256V1Field.SquareN(x12, 12, x24);
|
|
SM2P256V1Field.Multiply(x24, x12, x24);
|
|
uint[] x30 = x12;
|
|
SM2P256V1Field.SquareN(x24, 6, x30);
|
|
SM2P256V1Field.Multiply(x30, x6, x30);
|
|
uint[] x31 = x6;
|
|
SM2P256V1Field.Square(x30, x31);
|
|
SM2P256V1Field.Multiply(x31, x1, x31);
|
|
|
|
uint[] t1 = x24;
|
|
SM2P256V1Field.SquareN(x31, 31, t1);
|
|
|
|
uint[] x62 = x30;
|
|
SM2P256V1Field.Multiply(t1, x31, x62);
|
|
|
|
SM2P256V1Field.SquareN(t1, 32, t1);
|
|
SM2P256V1Field.Multiply(t1, x62, t1);
|
|
SM2P256V1Field.SquareN(t1, 62, t1);
|
|
SM2P256V1Field.Multiply(t1, x62, t1);
|
|
SM2P256V1Field.SquareN(t1, 4, t1);
|
|
SM2P256V1Field.Multiply(t1, x4, t1);
|
|
SM2P256V1Field.SquareN(t1, 32, t1);
|
|
SM2P256V1Field.Multiply(t1, x1, t1);
|
|
SM2P256V1Field.SquareN(t1, 62, t1);
|
|
|
|
uint[] t2 = x4;
|
|
SM2P256V1Field.Square(t1, t2);
|
|
|
|
return Nat256.Eq(x1, t2) ? new SM2P256V1FieldElement(t1) : null;
|
|
}
|
|
|
|
public override bool Equals(object obj)
|
|
{
|
|
return Equals(obj as SM2P256V1FieldElement);
|
|
}
|
|
|
|
public override bool Equals(ECFieldElement other)
|
|
{
|
|
return Equals(other as SM2P256V1FieldElement);
|
|
}
|
|
|
|
public virtual bool Equals(SM2P256V1FieldElement other)
|
|
{
|
|
if (this == other)
|
|
return true;
|
|
if (null == other)
|
|
return false;
|
|
return Nat256.Eq(x, other.x);
|
|
}
|
|
|
|
public override int GetHashCode()
|
|
{
|
|
return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 8);
|
|
}
|
|
}
|
|
}
|
|
|