You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

215 lines
6.8 KiB

using System;
using Org.BouncyCastle.Math.Raw;
using Org.BouncyCastle.Utilities;
using Org.BouncyCastle.Utilities.Encoders;
namespace Org.BouncyCastle.Math.EC.Custom.Sec
{
internal class SecP256K1FieldElement
: AbstractFpFieldElement
{
public static readonly BigInteger Q = new BigInteger(1,
Hex.DecodeStrict("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F"));
protected internal readonly uint[] x;
public SecP256K1FieldElement(BigInteger x)
{
if (x == null || x.SignValue < 0 || x.CompareTo(Q) >= 0)
throw new ArgumentException("value invalid for SecP256K1FieldElement", "x");
this.x = SecP256K1Field.FromBigInteger(x);
}
public SecP256K1FieldElement()
{
this.x = Nat256.Create();
}
protected internal SecP256K1FieldElement(uint[] x)
{
this.x = x;
}
public override bool IsZero
{
get { return Nat256.IsZero(x); }
}
public override bool IsOne
{
get { return Nat256.IsOne(x); }
}
public override bool TestBitZero()
{
return Nat256.GetBit(x, 0) == 1;
}
public override BigInteger ToBigInteger()
{
return Nat256.ToBigInteger(x);
}
public override string FieldName
{
get { return "SecP256K1Field"; }
}
public override int FieldSize
{
get { return Q.BitLength; }
}
public override ECFieldElement Add(ECFieldElement b)
{
uint[] z = Nat256.Create();
SecP256K1Field.Add(x, ((SecP256K1FieldElement)b).x, z);
return new SecP256K1FieldElement(z);
}
public override ECFieldElement AddOne()
{
uint[] z = Nat256.Create();
SecP256K1Field.AddOne(x, z);
return new SecP256K1FieldElement(z);
}
public override ECFieldElement Subtract(ECFieldElement b)
{
uint[] z = Nat256.Create();
SecP256K1Field.Subtract(x, ((SecP256K1FieldElement)b).x, z);
return new SecP256K1FieldElement(z);
}
public override ECFieldElement Multiply(ECFieldElement b)
{
uint[] z = Nat256.Create();
SecP256K1Field.Multiply(x, ((SecP256K1FieldElement)b).x, z);
return new SecP256K1FieldElement(z);
}
public override ECFieldElement Divide(ECFieldElement b)
{
//return Multiply(b.Invert());
uint[] z = Nat256.Create();
SecP256K1Field.Inv(((SecP256K1FieldElement)b).x, z);
SecP256K1Field.Multiply(z, x, z);
return new SecP256K1FieldElement(z);
}
public override ECFieldElement Negate()
{
uint[] z = Nat256.Create();
SecP256K1Field.Negate(x, z);
return new SecP256K1FieldElement(z);
}
public override ECFieldElement Square()
{
uint[] z = Nat256.Create();
SecP256K1Field.Square(x, z);
return new SecP256K1FieldElement(z);
}
public override ECFieldElement Invert()
{
//return new SecP256K1FieldElement(ToBigInteger().ModInverse(Q));
uint[] z = Nat256.Create();
SecP256K1Field.Inv(x, z);
return new SecP256K1FieldElement(z);
}
/**
* return a sqrt root - the routine verifies that the calculation returns the right value - if
* none exists it returns null.
*/
public override ECFieldElement Sqrt()
{
/*
* Raise this element to the exponent 2^254 - 2^30 - 2^7 - 2^6 - 2^5 - 2^4 - 2^2
*
* Breaking up the exponent's binary representation into "repunits", we get:
* { 223 1s } { 1 0s } { 22 1s } { 4 0s } { 2 1s } { 2 0s}
*
* Therefore we need an addition chain containing 2, 22, 223 (the lengths of the repunits)
* We use: 1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
*/
uint[] x1 = this.x;
if (Nat256.IsZero(x1) || Nat256.IsOne(x1))
return this;
uint[] x2 = Nat256.Create();
SecP256K1Field.Square(x1, x2);
SecP256K1Field.Multiply(x2, x1, x2);
uint[] x3 = Nat256.Create();
SecP256K1Field.Square(x2, x3);
SecP256K1Field.Multiply(x3, x1, x3);
uint[] x6 = Nat256.Create();
SecP256K1Field.SquareN(x3, 3, x6);
SecP256K1Field.Multiply(x6, x3, x6);
uint[] x9 = x6;
SecP256K1Field.SquareN(x6, 3, x9);
SecP256K1Field.Multiply(x9, x3, x9);
uint[] x11 = x9;
SecP256K1Field.SquareN(x9, 2, x11);
SecP256K1Field.Multiply(x11, x2, x11);
uint[] x22 = Nat256.Create();
SecP256K1Field.SquareN(x11, 11, x22);
SecP256K1Field.Multiply(x22, x11, x22);
uint[] x44 = x11;
SecP256K1Field.SquareN(x22, 22, x44);
SecP256K1Field.Multiply(x44, x22, x44);
uint[] x88 = Nat256.Create();
SecP256K1Field.SquareN(x44, 44, x88);
SecP256K1Field.Multiply(x88, x44, x88);
uint[] x176 = Nat256.Create();
SecP256K1Field.SquareN(x88, 88, x176);
SecP256K1Field.Multiply(x176, x88, x176);
uint[] x220 = x88;
SecP256K1Field.SquareN(x176, 44, x220);
SecP256K1Field.Multiply(x220, x44, x220);
uint[] x223 = x44;
SecP256K1Field.SquareN(x220, 3, x223);
SecP256K1Field.Multiply(x223, x3, x223);
uint[] t1 = x223;
SecP256K1Field.SquareN(t1, 23, t1);
SecP256K1Field.Multiply(t1, x22, t1);
SecP256K1Field.SquareN(t1, 6, t1);
SecP256K1Field.Multiply(t1, x2, t1);
SecP256K1Field.SquareN(t1, 2, t1);
uint[] t2 = x2;
SecP256K1Field.Square(t1, t2);
return Nat256.Eq(x1, t2) ? new SecP256K1FieldElement(t1) : null;
}
public override bool Equals(object obj)
{
return Equals(obj as SecP256K1FieldElement);
}
public override bool Equals(ECFieldElement other)
{
return Equals(other as SecP256K1FieldElement);
}
public virtual bool Equals(SecP256K1FieldElement other)
{
if (this == other)
return true;
if (null == other)
return false;
return Nat256.Eq(x, other.x);
}
public override int GetHashCode()
{
return Q.GetHashCode() ^ Arrays.GetHashCode(x, 0, 8);
}
}
}