You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
279 lines
8.5 KiB
279 lines
8.5 KiB
using System;
|
|
|
|
using Org.BouncyCastle.Math.Raw;
|
|
|
|
namespace Org.BouncyCastle.Math.EC.Custom.Sec
|
|
{
|
|
internal class SecP256R1Point
|
|
: AbstractFpPoint
|
|
{
|
|
/**
|
|
* Create a point which encodes with point compression.
|
|
*
|
|
* @param curve
|
|
* the curve to use
|
|
* @param x
|
|
* affine x co-ordinate
|
|
* @param y
|
|
* affine y co-ordinate
|
|
*
|
|
* @deprecated Use ECCurve.createPoint to construct points
|
|
*/
|
|
public SecP256R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
|
|
: this(curve, x, y, false)
|
|
{
|
|
}
|
|
|
|
/**
|
|
* Create a point that encodes with or without point compresion.
|
|
*
|
|
* @param curve
|
|
* the curve to use
|
|
* @param x
|
|
* affine x co-ordinate
|
|
* @param y
|
|
* affine y co-ordinate
|
|
* @param withCompression
|
|
* if true encode with point compression
|
|
*
|
|
* @deprecated per-point compression property will be removed, refer
|
|
* {@link #getEncoded(bool)}
|
|
*/
|
|
public SecP256R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, bool withCompression)
|
|
: base(curve, x, y, withCompression)
|
|
{
|
|
if ((x == null) != (y == null))
|
|
throw new ArgumentException("Exactly one of the field elements is null");
|
|
}
|
|
|
|
internal SecP256R1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs, bool withCompression)
|
|
: base(curve, x, y, zs, withCompression)
|
|
{
|
|
}
|
|
|
|
protected override ECPoint Detach()
|
|
{
|
|
return new SecP256R1Point(null, AffineXCoord, AffineYCoord);
|
|
}
|
|
|
|
public override ECPoint Add(ECPoint b)
|
|
{
|
|
if (this.IsInfinity)
|
|
return b;
|
|
if (b.IsInfinity)
|
|
return this;
|
|
if (this == b)
|
|
return Twice();
|
|
|
|
ECCurve curve = this.Curve;
|
|
|
|
SecP256R1FieldElement X1 = (SecP256R1FieldElement)this.RawXCoord, Y1 = (SecP256R1FieldElement)this.RawYCoord;
|
|
SecP256R1FieldElement X2 = (SecP256R1FieldElement)b.RawXCoord, Y2 = (SecP256R1FieldElement)b.RawYCoord;
|
|
|
|
SecP256R1FieldElement Z1 = (SecP256R1FieldElement)this.RawZCoords[0];
|
|
SecP256R1FieldElement Z2 = (SecP256R1FieldElement)b.RawZCoords[0];
|
|
|
|
uint c;
|
|
uint[] tt1 = Nat256.CreateExt();
|
|
uint[] t2 = Nat256.Create();
|
|
uint[] t3 = Nat256.Create();
|
|
uint[] t4 = Nat256.Create();
|
|
|
|
bool Z1IsOne = Z1.IsOne;
|
|
uint[] U2, S2;
|
|
if (Z1IsOne)
|
|
{
|
|
U2 = X2.x;
|
|
S2 = Y2.x;
|
|
}
|
|
else
|
|
{
|
|
S2 = t3;
|
|
SecP256R1Field.Square(Z1.x, S2);
|
|
|
|
U2 = t2;
|
|
SecP256R1Field.Multiply(S2, X2.x, U2);
|
|
|
|
SecP256R1Field.Multiply(S2, Z1.x, S2);
|
|
SecP256R1Field.Multiply(S2, Y2.x, S2);
|
|
}
|
|
|
|
bool Z2IsOne = Z2.IsOne;
|
|
uint[] U1, S1;
|
|
if (Z2IsOne)
|
|
{
|
|
U1 = X1.x;
|
|
S1 = Y1.x;
|
|
}
|
|
else
|
|
{
|
|
S1 = t4;
|
|
SecP256R1Field.Square(Z2.x, S1);
|
|
|
|
U1 = tt1;
|
|
SecP256R1Field.Multiply(S1, X1.x, U1);
|
|
|
|
SecP256R1Field.Multiply(S1, Z2.x, S1);
|
|
SecP256R1Field.Multiply(S1, Y1.x, S1);
|
|
}
|
|
|
|
uint[] H = Nat256.Create();
|
|
SecP256R1Field.Subtract(U1, U2, H);
|
|
|
|
uint[] R = t2;
|
|
SecP256R1Field.Subtract(S1, S2, R);
|
|
|
|
// Check if b == this or b == -this
|
|
if (Nat256.IsZero(H))
|
|
{
|
|
if (Nat256.IsZero(R))
|
|
{
|
|
// this == b, i.e. this must be doubled
|
|
return this.Twice();
|
|
}
|
|
|
|
// this == -b, i.e. the result is the point at infinity
|
|
return curve.Infinity;
|
|
}
|
|
|
|
uint[] HSquared = t3;
|
|
SecP256R1Field.Square(H, HSquared);
|
|
|
|
uint[] G = Nat256.Create();
|
|
SecP256R1Field.Multiply(HSquared, H, G);
|
|
|
|
uint[] V = t3;
|
|
SecP256R1Field.Multiply(HSquared, U1, V);
|
|
|
|
SecP256R1Field.Negate(G, G);
|
|
Nat256.Mul(S1, G, tt1);
|
|
|
|
c = Nat256.AddBothTo(V, V, G);
|
|
SecP256R1Field.Reduce32(c, G);
|
|
|
|
SecP256R1FieldElement X3 = new SecP256R1FieldElement(t4);
|
|
SecP256R1Field.Square(R, X3.x);
|
|
SecP256R1Field.Subtract(X3.x, G, X3.x);
|
|
|
|
SecP256R1FieldElement Y3 = new SecP256R1FieldElement(G);
|
|
SecP256R1Field.Subtract(V, X3.x, Y3.x);
|
|
SecP256R1Field.MultiplyAddToExt(Y3.x, R, tt1);
|
|
SecP256R1Field.Reduce(tt1, Y3.x);
|
|
|
|
SecP256R1FieldElement Z3 = new SecP256R1FieldElement(H);
|
|
if (!Z1IsOne)
|
|
{
|
|
SecP256R1Field.Multiply(Z3.x, Z1.x, Z3.x);
|
|
}
|
|
if (!Z2IsOne)
|
|
{
|
|
SecP256R1Field.Multiply(Z3.x, Z2.x, Z3.x);
|
|
}
|
|
|
|
ECFieldElement[] zs = new ECFieldElement[]{ Z3 };
|
|
|
|
return new SecP256R1Point(curve, X3, Y3, zs, IsCompressed);
|
|
}
|
|
|
|
public override ECPoint Twice()
|
|
{
|
|
if (this.IsInfinity)
|
|
return this;
|
|
|
|
ECCurve curve = this.Curve;
|
|
|
|
SecP256R1FieldElement Y1 = (SecP256R1FieldElement)this.RawYCoord;
|
|
if (Y1.IsZero)
|
|
return curve.Infinity;
|
|
|
|
SecP256R1FieldElement X1 = (SecP256R1FieldElement)this.RawXCoord, Z1 = (SecP256R1FieldElement)this.RawZCoords[0];
|
|
|
|
uint c;
|
|
uint[] t1 = Nat256.Create();
|
|
uint[] t2 = Nat256.Create();
|
|
|
|
uint[] Y1Squared = Nat256.Create();
|
|
SecP256R1Field.Square(Y1.x, Y1Squared);
|
|
|
|
uint[] T = Nat256.Create();
|
|
SecP256R1Field.Square(Y1Squared, T);
|
|
|
|
bool Z1IsOne = Z1.IsOne;
|
|
|
|
uint[] Z1Squared = Z1.x;
|
|
if (!Z1IsOne)
|
|
{
|
|
Z1Squared = t2;
|
|
SecP256R1Field.Square(Z1.x, Z1Squared);
|
|
}
|
|
|
|
SecP256R1Field.Subtract(X1.x, Z1Squared, t1);
|
|
|
|
uint[] M = t2;
|
|
SecP256R1Field.Add(X1.x, Z1Squared, M);
|
|
SecP256R1Field.Multiply(M, t1, M);
|
|
c = Nat256.AddBothTo(M, M, M);
|
|
SecP256R1Field.Reduce32(c, M);
|
|
|
|
uint[] S = Y1Squared;
|
|
SecP256R1Field.Multiply(Y1Squared, X1.x, S);
|
|
c = Nat.ShiftUpBits(8, S, 2, 0);
|
|
SecP256R1Field.Reduce32(c, S);
|
|
|
|
c = Nat.ShiftUpBits(8, T, 3, 0, t1);
|
|
SecP256R1Field.Reduce32(c, t1);
|
|
|
|
SecP256R1FieldElement X3 = new SecP256R1FieldElement(T);
|
|
SecP256R1Field.Square(M, X3.x);
|
|
SecP256R1Field.Subtract(X3.x, S, X3.x);
|
|
SecP256R1Field.Subtract(X3.x, S, X3.x);
|
|
|
|
SecP256R1FieldElement Y3 = new SecP256R1FieldElement(S);
|
|
SecP256R1Field.Subtract(S, X3.x, Y3.x);
|
|
SecP256R1Field.Multiply(Y3.x, M, Y3.x);
|
|
SecP256R1Field.Subtract(Y3.x, t1, Y3.x);
|
|
|
|
SecP256R1FieldElement Z3 = new SecP256R1FieldElement(M);
|
|
SecP256R1Field.Twice(Y1.x, Z3.x);
|
|
if (!Z1IsOne)
|
|
{
|
|
SecP256R1Field.Multiply(Z3.x, Z1.x, Z3.x);
|
|
}
|
|
|
|
return new SecP256R1Point(curve, X3, Y3, new ECFieldElement[]{ Z3 }, IsCompressed);
|
|
}
|
|
|
|
public override ECPoint TwicePlus(ECPoint b)
|
|
{
|
|
if (this == b)
|
|
return ThreeTimes();
|
|
if (this.IsInfinity)
|
|
return b;
|
|
if (b.IsInfinity)
|
|
return Twice();
|
|
|
|
ECFieldElement Y1 = this.RawYCoord;
|
|
if (Y1.IsZero)
|
|
return b;
|
|
|
|
return Twice().Add(b);
|
|
}
|
|
|
|
public override ECPoint ThreeTimes()
|
|
{
|
|
if (this.IsInfinity || this.RawYCoord.IsZero)
|
|
return this;
|
|
|
|
// NOTE: Be careful about recursions between TwicePlus and ThreeTimes
|
|
return Twice().Add(this);
|
|
}
|
|
|
|
public override ECPoint Negate()
|
|
{
|
|
if (IsInfinity)
|
|
return this;
|
|
|
|
return new SecP256R1Point(Curve, RawXCoord, RawYCoord.Negate(), RawZCoords, IsCompressed);
|
|
}
|
|
}
|
|
}
|
|
|